Abstract:Stacked intelligent metasurfaces (SIMs), composed of multiple layers of reconfigurable transmissive metasurfaces, are gaining prominence as a transformative technology for future wireless communication security. This paper investigates the integration of SIM into multi-user multiple-input multiple-output (MIMO) systems to enhance physical layer security. A novel system architecture is proposed, wherein each base station (BS) antenna transmits a dedicated single-user stream, while a multi-layer SIM executes wave-based beamforming in the electromagnetic domain, thereby avoiding the need for complex baseband digital precoding and significantly reducing hardware overhead. To maximize the weighted sum secrecy rate (WSSR), we formulate a joint precoding optimization problem over BS power allocation and SIM phase shifts, which is high-dimensional and non-convex due to the complexity of the objective function and the coupling among optimization variables. To address this, we propose a manifold-enhanced heterogeneous multi-agent continual learning (MHACL) framework that incorporates gradient representation and dual-scale policy optimization to achieve robust performance in dynamic environments with high demands for secure communication. Furthermore, we develop SIM-MHACL (SIMHACL), a low-complexity learning template that embeds phase coordination into a product manifold structure, reducing the exponential search space to linear complexity while maintaining physical feasibility. Simulation results validate that the proposed framework achieves millisecond-level per-iteratio ntraining in SIM-assisted systems, significantly outperforming various baseline schemes, with SIMHACL achieving comparable WSSR to MHACL while reducing computation time by 30\%.
Abstract:Parameter tuning is a powerful approach to enhance adaptability in model predictive control (MPC) motion planners. However, existing methods typically operate in a myopic fashion that only evaluates executed actions, leading to inefficient parameter updates due to the sparsity of failure events (e.g., obstacle nearness or collision). To cope with this issue, we propose to extend evaluation from executed to non-executed actions, yielding a hierarchical proactive tuning (HPTune) framework that combines both a fast-level tuning and a slow-level tuning. The fast one adopts risk indicators of predictive closing speed and predictive proximity distance, and the slow one leverages an extended evaluation loss for closed-loop backpropagation. Additionally, we integrate HPTune with the Doppler LiDAR that provides obstacle velocities apart from position-only measurements for enhanced motion predictions, thus facilitating the implementation of HPTune. Extensive experiments on high-fidelity simulator demonstrate that HPTune achieves efficient MPC tuning and outperforms various baseline schemes in complex environments. It is found that HPTune enables situation-tailored motion planning by formulating a safe, agile collision avoidance strategy.
Abstract:In this work, we investigate a blockage-aware pinching antenna (PA) system designed for secure and robust wireless communication. The considered system comprises a base station equipped with multiple waveguides, each hosting multiple PAs, and serves multiple single-antenna legitimate users in the presence of multi-antenna eavesdroppers under imperfect channel state information (CSI). To safeguard confidential transmissions, artificial noise (AN) is deliberately injected to degrade the eavesdropping channels. Recognizing that conventional linear CSI-error bounds become overly conservative for spatially distributed PA architectures, we develop new geometry-aware uncertainty sets that jointly characterize eavesdroppers position and array-orientation errors. Building upon these sets, we formulate a robust joint optimization problem that determines per-waveguide beamforming and AN covariance, individual PA power-ratio allocation, and PA positions to maximize the system sum rate subject to secrecy constraints. The highly non-convex design problem is efficiently addressed via a low computational complexity iterative algorithm that capitalizes on block coordinate descent, penalty-based methods, majorization-minimization, the S-procedure, and Lipschitz-based surrogate functions. Simulation results demonstrate that sum rates for the proposed algorithm outperforms conventional fixed antenna systems by 4.7 dB, offering substantially improved rate and secrecy performance. In particular, (i) adaptive PA positioning preserves LoS to legitimate users while effectively exploiting waveguide geometry to disrupt eavesdropper channels, and (ii) neglecting blockage effects in the PA system significantly impacts the system design, leading to performance degradation and inadequate secrecy guarantees.
Abstract:Integrated sensing and communications (ISAC) is a disruptive technology enabling future sixth-generation (6G) networks. This paper investigates target detection in a bistatic ISAC system, in which the base station (BS) transmits superimposed ISAC signals comprising both Gaussian information-bearing and deterministic sensing components to simultaneously provide communication and sensing functionalities. First, we develop a Neyman-Pearson (NP)-based detector that effectively utilizes both the deterministic sensing and random communication signals. Closed-form analysis reveals that both signal components contribute to improving the overall detection performance. Subsequently, we optimize the BS transmit beamforming to maximize the detection probability, subject to a minimum signal-to-interference-plus-noise ratio (SINR) constraint for the communication user (CU) and a total transmit power budget at the BS. The resulting non-convex beamforming optimization problem is addressed via semi-definite relaxation (SDR) and successive convex approximation (SCA) techniques. Simulation results demonstrate the superiority of the proposed NP-based detector, which leverages both types of signals, over benchmark schemes that treat information signals as interference. They also reveal that a higher communication-rate threshold directs more transmit power to Gaussian information-bearing signals, thereby diminishing deterministic-signal power and weakening detection performance.
Abstract:Integrated sensing and communication (ISAC) enables simultaneous localization, environment perception, and data exchange for connected autonomous vehicles. However, most existing ISAC designs prioritize sensing accuracy and communication throughput, treating all targets uniformly and overlooking the impact of critical obstacles on motion efficiency. To overcome this limitation, we propose a planning-oriented ISAC (PISAC) framework that reduces the sensing uncertainty of planning-bottleneck obstacles and expands the safe navigable path for the ego-vehicle, thereby bridging the gap between physical-layer optimization and motion-level planning. The core of PISAC lies in deriving a closed-form safety bound that explicitly links ISAC transmit power to sensing uncertainty, based on the Cram\'er-Rao Bound and occupancy inflation principles. Using this model, we formulate a bilevel power allocation and motion planning (PAMP) problem, where the inner layer optimizes the ISAC beam power distribution and the outer layer computes a collision-free trajectory under uncertainty-aware safety constraints. Comprehensive simulations in high-fidelity urban driving environments demonstrate that PISAC achieves up to 40% higher success rates and over 5% shorter traversal times than existing ISAC-based and communication-oriented benchmarks, validating its effectiveness in enhancing both safety and efficiency.
Abstract:Networked integrated sensing and communication (ISAC) has gained significant attention as a promising technology for enabling next-generation wireless systems. To further enhance networked ISAC, delegating the reception of sensing signals to dedicated target monitoring terminals (TMTs) instead of base stations (BSs) offers significant advantages in terms of sensing capability and deployment flexibility. Despite its potential, the coordinated beamforming design for networked integrated communication and time-of-arrival (ToA)-based multi-TMT localization remains largely unexplored. In this paper, we present a comprehensive study to fill this gap. Specifically, we first establish signal models for both communication and localization, and, for the first time, derive a closed-form Cram\'er-Rao lower bound (CRLB) to characterize the localization performance. Subsequently, we exploit this CRLB to formulate two optimization problems, focusing on sensing-centric and communication-centric criteria, respectively. For the sensing-centric problem, we develop a globally optimal algorithm based on semidefinite relaxation (SDR) when each BS is equipped with more antennas than the total number of communication users. While for the communication-centric problem, we design a globally optimal algorithm for the single-BS case using bisection search. For the general case of both problems, we propose a unified successive convex approximation (SCA)-based algorithm, which is suboptimal yet efficient, and further extend it from single-target scenarios to more practical multi-target scenarios. Finally, simulation results demonstrate the effectiveness of our proposed algorithms, reveal the intrinsic performance trade-offs between communication and localization, and further show that deploying more TMTs is always preferable to deploying more BSs in networked ISAC systems.




Abstract:Sensing-assisted predictive beamforming, as one of the enabling technologies for emerging integrated sensing and communication (ISAC) paradigm, shows significant promise for enhancing various future unmanned aerial vehicle (UAV) applications. However, current works predominately emphasized on spectral efficiency enhancement, while the impact of such beamforming techniques on the communication reliability was largely unexplored and challenging to characterize. To fill this research gap and tackle this issue, this paper investigates outage capacity maximization for UAV tracking under the sensing-assisted predictive beamforming scheme. Specifically, a cellular-connected UAV tracking scheme is proposed leveraging extended Kalman filtering (EKF), where the predicted UAV trajectory, sensing duration ratio, and target constant received signal-to-noise ratio (SNR) are jointly optimized to maximize the outage capacity at each time slot. To address the implicit nature of the objective function, closed-form approximations of the outage probabilities (OPs) at both prediction and measurement stages of each time slot are proposed based on second-order Taylor expansions, providing an efficient and full characterization of outage capacity. Subsequently, an efficient algorithm is proposed based on a combination of bisection search and successive convex approximation (SCA) to address the non-convex optimization problem with guaranteed convergence. To further reduce computational complexity, a second efficient algorithm is developed based on alternating optimization (AO). Simulation results validate the accuracy of the derived OP approximations, the effectiveness of the proposed algorithms, and the significant outage capacity enhancement over various benchmarks, while also indicating a trade-off between decreasing path loss and enjoying wide beam coverage for outage capacity maximization.




Abstract:Realizing low-cost communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSMR), which enables the simulator to opportunistically render a photo-realistic view from the robot's pose by calling ``memory'' from a GS model, thus reducing the need for excessive image uploads. However, the GS model may involve discrepancies compared to the actual environments. To this end, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation (i.e., adjusting to content profiles) across different frames by minimizing a newly derived GSMR loss function. The GSCLO problem is addressed by an accelerated penalty optimization (APO) algorithm that reduces computational complexity by over $10$x compared to traditional branch-and-bound and search algorithms. Moreover, variants of GSCLO are presented to achieve robust, low-power, and multi-robot GSMR. Extensive experiments demonstrate that the proposed GSMR paradigm and GSCLO method achieve significant improvements over existing benchmarks on both wheeled and legged robots in terms of diverse metrics in various scenarios. For the first time, it is found that RoboMR can be achieved with ultra-low communication costs, and mixture of data is useful for enhancing GS performance in dynamic scenarios.




Abstract:Integrated sensing and communication (ISAC) is a pivotal component of sixth-generation (6G) wireless networks, leveraging high-frequency bands and massive multiple-input multiple-output (M-MIMO) to deliver both high-capacity communication and high-precision sensing. However, these technological advancements lead to significant near-field effects, while the implementation of M-MIMO \mbox{is associated with considerable} hardware costs and escalated power consumption. In this context, hybrid architecture designs emerge as both hardware-efficient and energy-efficient solutions. Motivated by these considerations, we investigate the design of energy-efficient hybrid beamfocusing for near-field ISAC under two distinct target scenarios, i.e., a point target and an extended target. Specifically, we first derive the closed-form Cram\'{e}r-Rao bound (CRB) of joint angle-and-distance estimation for the point target and the Bayesian CRB (BCRB) of the target response matrix for the extended target. Building on these derived results, we minimize the CRB/BCRB by optimizing the transmit beamfocusing, while ensuring the energy efficiency (EE) of the system and the quality-of-service (QoS) for communication users. To address the resulting \mbox{nonconvex problems}, we first utilize a penalty-based successive convex approximation technique with a fully-digital beamformer to obtain a suboptimal solution. Then, we propose an efficient alternating \mbox{optimization} algorithm to design the analog-and-digital beamformer. \mbox{Simulation} results indicate that joint distance-and-angle estimation is feasible in the near-field region. However, the adopted hybrid architectures inevitably degrade the accuracy of distance estimation, compared with their fully-digital counterparts. Furthermore, enhancements in system EE would compromise the accuracy of target estimation, unveiling a nontrivial tradeoff.
Abstract:In decentralized federated learning (FL), multiple clients collaboratively learn a shared machine learning (ML) model by leveraging their privately held datasets distributed across the network, through interactive exchange of the intermediate model updates. To ensure data security, cryptographic techniques are commonly employed to protect model updates during aggregation. Despite growing interest in secure aggregation, existing works predominantly focus on protocol design and computational guarantees, with limited understanding of the fundamental information-theoretic limits of such systems. Moreover, optimal bounds on communication and key usage remain unknown in decentralized settings, where no central aggregator is available. Motivated by these gaps, we study the problem of decentralized secure aggregation (DSA) from an information-theoretic perspective. Specifically, we consider a network of $K$ fully-connected users, each holding a private input -- an abstraction of local training data -- who aim to securely compute the sum of all inputs. The security constraint requires that no user learns anything beyond the input sum, even when colluding with up to $T$ other users. We characterize the optimal rate region, which specifies the minimum achievable communication and secret key rates for DSA. In particular, we show that to securely compute one symbol of the desired input sum, each user must (i) transmit at least one symbol to others, (ii) hold at least one symbol of secret key, and (iii) all users must collectively hold no fewer than $K - 1$ independent key symbols. Our results establish the fundamental performance limits of DSA, providing insights for the design of provably secure and communication-efficient protocols in distributed learning systems.